Problems 1-2

Time Limit: 10 minutes

Name \qquad
School \qquad

1. Compute the number of ordered pairs of nonnegative integers (x, y) such that $4^{x} \cdot 2^{x+y}=256$.
2. Points C and T lie outside and inside square $A R M L$, respectively, so that $\triangle A C R \cong \triangle M T R$, and $\mathrm{m} \angle A C R=90^{\circ}$. Suppose that $A C=1$ and $C T=24$. Compute $[A R M L]$, the area of $A R M L$.

2022 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 3-4

Time Limit: 10 minutes

Name

\qquad
School \qquad
3. In $\triangle A B C$, points M, N, and O lie on $\overline{A B}, \overline{B C}$, and $\overline{A C}$ respectively, so that $\frac{A M}{M B}=\frac{2}{3}$ and O is the midpoint of $\overline{A C}$. Suppose that $\overline{A N}, \overline{C M}$, and $\overline{B O}$ intersect at Q. Compute $\frac{M Q}{Q C}$.
4. Compute the number of ways to split a plate of five chocolate-chip cookies and two snickerdoodles among three children, assuming that no child is guaranteed to receive a cookie. (Cookies of each kind are identical and cannot be broken.)

2022 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 5-6
Time Limit: 10 minutes

Name \qquad
School \qquad
5. Compute the number of values of $x, 0<x<2 \pi$, such that

$$
\left(4^{\cos (2 x)}\right)^{\sin (2 x)}=2
$$

6. A very confused student mixes up sines, cosines, and logs, and comes up with the "identity" $\log _{2}(2 x)=1-2\left(\log _{2} x\right)^{2}$. Although it is not true for all values of x, amazingly, it is true for some values of x. Compute all values of x that satisfy this equation.

2022 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 7-8

Time Limit: 10 minutes

Name \qquad
School \qquad
7. A tiling of the plane consists of black 1×1 squares surrounded by white 2×1 rectangles, where the pattern shown below is repeated forever in all directions. Compute the fraction of the plane that is black.

8. Ari, Jonah, and Helen go for a jog around a circular track. Ari and Helen take off in one direction at 6 feet per second and 4 feet per second, respectively, while Jonah runs in the opposite direction at 5 feet per second. All three runners start from the same point at the same time, and the jog finishes when they all three are again at the same point at the same time. Whenever one runner passes another in either direction, they give a high-five. Compute the number of high-fives that occur between the start and the end.

2022 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 9-10
Time Limit: 10 minutes

Name \qquad
School \qquad
9. The roots of the polynomial $x^{3}+p x^{2}+24 x+q$ are integers, not necessarily distinct. Suppose that 2 is one of the roots. Compute the greatest possible value of $|q|$.
10. For some integer p, a trapezoid has bases of length 9 and p, and legs of length 9 and 8 . Compute the number of possible values of p.

2022 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 11-12

Name \qquad
Time Limit: 10 minutes
School \qquad
11. On the complex plane, z and w are numbers satisfying $z^{6}=1$ and $w^{4}=-1$. Given that $0, z, w$, and $z+w$ form a quadrilateral with nonzero area, the minimum possible area of the quadrilateral can be expressed as $\frac{\sqrt{a}-\sqrt{b}}{c}$, where a, b, and c are positive integers, and a and b are squarefree. Compute $a+b+c$.
12. Rene and Blaise play a game flipping a weighted coin that comes up heads with probability p. Rene wins if the coin comes up heads twice in a row, while Blaise wins if the coin comes up tails twice in a row; if the flips are different, they continue flipping until two consecutive flips are the same. After a while, nobody has won and the two get bored with the game, so after flipping one last tails, they agree to split the pot evenly. Assuming this division is fair, compute p.

2022 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 13-14

Name \qquad
Time Limit: 10 minutes
School \qquad
13. In convex quadrilateral $A R M L, A R=6, R M=8$, and $\overline{A R} \perp \overline{R M}$. Let $\mathrm{m} \angle A L M=120^{\circ}$. Compute the maximum possible area of $A R M L$.
14. The base-factorial representation of a real number $0 \leq r<1$ is the number $0 . b_{1} b_{2} b_{3} \ldots$, where:

- for every positive integer i, b_{i} is a nonnegative integer less than or equal to i, and
- $\frac{b_{1}}{2!}+\frac{b_{2}}{3!}+\frac{b_{3}}{4!}+\cdots=r$.

Compute the base-factorial representation of $\frac{20}{21}$.

2022 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 15-16

Time Limit: 10 minutes

Name

\qquad
School \qquad
15. Let $\alpha=\cot \left(\frac{\pi}{12}\right)$ and let $\beta=\tan \left(\frac{\pi}{12}\right)$. Compute $\left\lfloor\alpha^{12}+\beta^{12}\right\rfloor$.
16. An equilateral triangle $A B C$ in three-dimensional space can be spiked by situating a point P in space so that triangles $P A B, P B C$, and $P A C$ are isoseceles right triangles with right angles at P. Each face of a regular tetrahedron is spiked, using a point located outside the tetrahedron. The resulting figure is a convex polyhedron. Given that the edges of the tetrahedron have length 12 , compute the volume of its spiked counterpart.

Problems 17-18

Time Limit: 12 minutes

Name \qquad
School \qquad
17. Compute the sum of all values of x such that $\log _{2}\left(\log _{4} x\right)+\log _{4}\left(\log _{2} x\right)=\frac{7}{2}$.
18. Complete the cross-number puzzle below, where each Across answer is a four-digit number and each Down answer is a three-digit number. No answer begins with the digit 0 .
Your answer must be written in the space at the bottom of this page, not the grid to the right!

Across

1. Just like the number 2022 , all but one of its digits are the same
2. All digits are distinct primes
3. No digit is a multiple of 3

Down

1. A perfect cube
2. The rightmost three digits of the least multiple of 2022 , none of whose digits is 0
3. A Fibonacci number
4. A palindrome

ANSWER TO PROBLEM 17

ANSWER TO PROBLEM 18

Problems 19-20
Time Limit: 10 minutes

Name \qquad
School \qquad
19. For $x>0$, compute the minimum possible value of $4096^{x-\sqrt{x}}$.
20. From left to right, the last eight digits of n !, expressed in base 10, are $20,000,000$. Compute n.

2022 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 21-22

Time Limit: 10 minutes

Name \qquad
School \qquad
21. Benny the bug starts at point A and travels 1 meter in a straight line. Benny then turns left 90° and travels another 1 meter in a straight line. Benny turns 90° left and travels 2 meters in a straight line, turns left again, and travels another 2 meters in a straight line. Benny continues in this fashion, adding 1 meter to the length of his walks every two segments and turning left 90° after each segment. After Benny has walked 2022 meters, compute the number of meters he is from his starting point.
22. Regular nonagon $M A T H I S F U N$ has side length 17 . Compute $I F \cdot I T-I S \cdot N T$.

2022 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 23-24

Time Limit: 10 minutes

Name

\qquad
School \qquad
23. In a typical recent year, the gap between the amount of federal income taxes owed and taxes actually paid is about $\$ 441,000,000,000$, according to the IRS. Compute the sum of the distinct prime factors of $441,000,000,000$.
24. Segment $\overline{D K}$ has length $\frac{40}{7}$. Points Y and P lie on $\overrightarrow{D K}$, with Y between D and K, and K between D and P, so that $\frac{Y D}{Y K}=\frac{D P}{K P}$. Let y be the greater of $D Y$ and $D P$, and let p be the lesser of $D Y$ and $D P$. Given that $y p=40$, compute the ordered pair (y, p).

Part I Answers

1. 3
2. $\frac{3}{5}$ (or 0.6)
3. 4
4. $\frac{1}{5}$ (or 0.2)
5. 180
6. 12
7. $\frac{72+25 \sqrt{3}}{3}$
8. 126
9. 289
10. $\quad 1, \frac{\sqrt{2}}{2} \quad \underset{2^{-1 / 2} \text { is acceptable) }}{\text { (must the both; }}$
11. 19
12. 22
13. $\frac{\sqrt{5}-1}{2}$
14. 0.122415

Part II Answers

15. 7300802
16. 256
17. $\frac{1}{8}$ (or 0.125)
18. $2 \sqrt{221}$
19. 17
20. 289
21. $432 \sqrt{2}$
22. | 1 | 1 | 3 | 1 |
| :--- | :--- | :--- | :--- |
| 2 | 3 | 7 | 5 |
| 5 | 2 | 7 | 1 |
23. 34
24. $(10,4)$

Tryout Results 2022

$$
\begin{gathered}
\text { Item Analysis } \\
(n=186 \text { for Q1-Q24 })
\end{gathered}
$$

Q	\# right	\%				
1	119	64%				
2	123	66%				
3	125	67%				
4	83	45%				
5	89	48%				
6	72	39%				
7	125	67%				
8	166	89%				
9	154	83%				
10	40	22%				
11	113	61%				
12	40	22%	\quad	Q	\# right	\%
:---:	:---:	:---:	:---:			
13	125	67%				
14	135	73%				
15	80	43%				
16	28	15%				
17	110	59%				
18	59	32%				
19	47	25%				
20	22	12%				
21	49	26%				
22	128	69%				
23	121	65%				
24	98	53%				

$\underline{\text { Distribution of Top Scores }}$

Score	\boldsymbol{n}
24	2
23	5
22	4
21	7
20	5
19	6
18	9
17	11
16	12
15	11
14	16

