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1.
Use the laws of exponents to rewrite the given equation: 4x · 2x+y = 22x · 2x+y = 23x+y.
On the right-hand side 256 = 28. So 3x + y = 8 and x and y must be nonnegative

integers. Each choice of x leads to a unique y. In fact, the solutions are (x, y) = (0, 8), (1, 5),
and (2, 2). Larger choices of x lead to negative y. So there are 3 such ordered pairs.

2.
Since ∠CRM − ∠CRA leaves right angle ∠ARM , and it is given that angles ∠CRA
and ∠TRM are congruent, it must be the case that ∠CRM −∠TRM = ∠TRC is also

a right angle. It is also given that CR = TR so 4CRT is an isosceles right triangle whose
hypotenuse is given to be 24. That means that the legs are CR = TR = 12

√
2. Turning to

right triangle 4ACR whose legs are 1 and 12
√

2, the hypotenuse is AR2 = 12 + (12
√

2)2 =
289. But note that the area requested is simply AR2 = 289 !

3.
There are a number of ways to solve this problem. Perhaps the most direct is to apply
Menelaus’s Theorem to 4AMC with transversal BO leads to AB

BM
· MQ
QC
· CO
OA

= 1. The

ratio AM
MB

= 2
3

so AB
BM

= AM+MB
BM

= 2
3

+ 1 = 5
3
. Since O is given to be the midpoint of AC the

ratio CO
OA

= 1. Thus MQ
QC

=
3

5
.

A more brute force approach involves choosing lengths for the sides. Since there are 2’s
and 3’s in the problem, and 2 + 3 = 5, and the numbers 3 and 5 remind us of the 3-4-5
triangle, choose lengths AM = 2, MB = 3, and BC = 5. Then MC = 4. Applying
Pythagoras to 4AMC yields AC =

√
20. Now 4QOC is also a right triangle similar to

triangle 4AMC because they share the angle at C. Since OC =
√

20/2 =
√

5, by similarity

the length QC =
√
20
4
·
√

5 = 5
2
. Then QM = 4− 5

2
= 3

2
and MQ

QC
=

3

5
.

Finally, for those who love mass points, place a mass of 3 at A, a mass of 2 at B, and a
mass of 3 at C. These choices cause the triangle to balance along segments MC and BO.
So the triangle will balance at point Q. Now slide the two masses on side AB to M to find
that MC balances at Q with a mass of 5 at M and a mass of 3 at C, and once again the
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ratio MQ
QC

=
3

5
.

4.
The distributions of the chocolate-chip cookies and the snickerdoodles are independent
of each other. That means the total number of possible distributions can be determined

by finding the number of ways to distribute each cookie and multiplying.
There are six ways to distribute the snickerdoodles. Either both are given to one child

(three choices of which child) or one is given to each of two children (three choices of which
child does not get a cookie).

To split up the chocolate-chip cookies, consider all possible distributions. They could be
split 5-0-0 (three ways to do this), 4-1-0 (six ways—three choices of who gets 4 and then
two choices of who gets 1), 3-2-0 (six ways), 3-1-1 (three ways), or 2-2-1 (three ways). That
adds up to 21 possible distributions of the chocolate-chip cookies.

That makes the final total 6 · 21 = 126 .
An important technique for mathletes is to learn how to count the number of ways to

put k identical balls into n distinguishable urns. In this case, 5 cookies (balls) distributed
among 3 children (urns). The technique is known to some as sticks-and-stones because it
can be explained by taking k stones representing the balls and n− 1 sticks and seeing how
many ways there are to place the sticks among the stones. The sticks act as dividers for
which urn the stones are going into. For instance, the arrangement ∗ ∗ | ∗ ∗| ∗ (where ∗ is a
stone and | is a stick) represents the first two urns getting two balls each and the last urn
getting one ball. The arrangement ∗ ∗ ∗|| ∗ ∗ represents three balls in the first urn and two
in the last, with none in the middle. The arrangement | ∗ ∗ ∗ ∗ ∗ | represents the middle urn
getting all the balls. Since there are k+n−1 total symbols and k−1 are sticks, the number
of choices is

(
k+n−1
k−1

)
. In the case of the chocolate-chip cookies, k = 5 and n = 3 so there are(

7
2

)
= 21 arrangements. For the snickerdoodles there are

(
2+3−1
3−1

)
=
(
4
2

)
= 6 arrangements.

5.
First, use the laws of exponents to rewrite the given equation as 4(cos(2x) sin(2x)) = 2. Now
cos(2x) sin(2x) = 1

2
sin(4x) by the double-angle formula. Since 2 = 41/2 the equation is

satisfied when sin(4x) = 1. This happens 4 times in the interval 0 < x < 2π.

6.
Apply the laws of logarithms to the left-hand side to obtain log2(2) + log2(x) = 1 +
log2(x). Setting this equal to 1− 2(log2(x))2 allows the 1’s to cancel, leaving log2(x) =

−2(log2(x))2. Letting y = log2(x) transforms the equation to y = −2y2 which has solutions

y = 0 and y = −1/2. So log2(x) = 0 or log2(x) = −1/2, giving x = 1 or 2−1/2 .
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7.
Take a single black square and the rectangles that border it above and to the left, and
fuse them together into a hexagon, as shown below:

These hexagons act as tiles (the mathematical term is fundamental regions) and the entire
plane can be made from them as shown:

Since each fundamental region has area 5 and the black area is 1,
1

5
of the plane is black.

8.
Consider the situation from Jonah’s point of view. Jonah could pretend to be jogging
in place while the track is rotating in the opposite direction at 5 feet per second. The

other two runners are traveling along the moving track at 6 and 4 feet per second, so their
speeds relative to Jonah are 5 + 6 = 11 and 5 + 4 = 9 feet per second, respectively. For
all three runners to meet, both Ari and Helen must have run an integral number of times
around the track relative to Jonah. Since Ari runs 11/9 times as fast as Helen, the first time
this occurs is when Ari has run 11 laps and Helen has run 9. Since Ari has run 11 laps,
he has passed Jonah 10 times (stopping at the end of the 11th) so delivered 10 high-fives.
Similarly, Helen has given 8 high-fives to Jonah. And since Ari has run around the track
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two more times than Helen, Ari must have passed Helen once (one more high-five). So the
total number of high-fives between all the runners is 10 + 8 + 1 = 19 .

9.
Let the roots be 2, a, and b. Multiplying out the factored polynomial (x−2)(x−a)(x−b)
yields x3 + (−2 − a − b)x2 + (2a + 2b + ab)x − 2ab. So ab + 2a + 2b = 24. Factor the

left-hand side of this equation: (a + 2)(b + 2)− 4 = 24 so (a + 2)(b + 2) = 28. Since a and
b are integers, it must be that a + 2 and b + 2 are factors of 28. For instance, a + 2 = 4
and b + 2 = 7 leads to (a, b) = (2, 5). The other possibilities for (a, b) are (0, 12), (−1, 26),
(−3,−30), (−4,−16), and (−6,−9) or their reverses (12, 0), (26,−1), etc. The greatest that
|q| = |2ab| can be from these possibilities is |q| = |2(−3)(−30)| = 180 .

10.
Let h be the height of the trapezoid. This height must be at most 8, the length of
one of the legs of the trapezoid. If both angles between the base of length 9 and the

two legs are acute, then the opposite base has length 9−
√

92 − h2 −
√

82 − h2 by using the
Pythagorean Theorem twice. If h is too small, this value would be negative; it is zero when
h is the altitude to one of the sides of length 9 in the 9-9-8 triangle. As h increases from this
value up to h = 8 the length of the opposite base increases from 0 to 9−

√
17. Thus, if both

base angles are acute and the opposite base is required to be an integer, the only possible
lengths are 1, 2, 3, and 4.

If the angle to the leg of length 8 is obtuse then 0 < h < 8 and the opposite side now has
length 9−

√
92 − h2 +

√
82 − h2 which varies in the range (9−

√
17, 8). Thus, p can attain

the values 5, 6, or 7.
If the angle between the base of length 9 and the leg of length 9 is obtuse, then the length

of the opposite base is 9 +
√

92 − h2±
√

82 − h2, with the plus chosen if the other base angle
to the leg of length 8 is also obtuse, the minus chosen if acute. Again, h may vary in the
range 0 < h < 8. The smallest this length could be is if h is near zero and the minus sign
is chosen, making the opposite base just larger than 10; the largest it be is when h is near
zero and the plus sign is chosen, making the opposite base just smaller than 26. All numbers
in between are possible values, so p can take on values between 11 and 25 inclusive. Thus,
altogether there are 15 + 7 = 22 possible values for p.

11.
An application of de Moivre’s Theorem shows that z must be a complex number of
the form 1 cis(θ) where θ is a multiple of 60◦. Another application shows that w

is of the form 1 cis(ω) where ω is an odd multiple of 45◦. Sketching the numbers in an
Argand diagram shows that 0, z, w, and z + w form a parallelogram whose area is seen to
be 1 · 1 · | sin(θ − ω)|. Since the area is nonzero and different choices of θ and ω can only
make θ − ω be a multiple of 15◦, the smallest | sin(θ)| can be is sin(15◦). Many mathletes
know this value, but if you don’t you can quickly compute it using angle addition formulas
by finding sin(60◦ − 45◦) = sin(60◦) cos(45◦) − cos(60◦) sin(45◦) which evaluates to

√
6−
√
2

4
.
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Thus a = 6, b = 2, and c = 4, so a+ b+ c = 12 .

12.
Historically, the field of probability was created to determine how to split pots in
games like this that were left unfinished. A fair division of the pot is one where each

contestant receives a fraction of the pot that is equal to his or her probability of winning the
pot were the game to be completed. In this case, the value of p must be determined so that
the probability of each player winning if the game were continued, and given that tails has
just been tossed, is equal to the share of the pot they are taking, which is 1/2.

To that end, define Bt to be the probability that Blaise would win the continued game
given that the last throw was tails, with Bh, Rt, and Rh defined similarly for the two
players and the two possible last throws. These values can be computed using the following
information:

• Blaise wins if the next throw is tails (probability (1−p)) or if it is heads (probability p)
and he wins the ensuing game starting with heads: Bt = (1− p) + pBh.

• Had the previous throw been heads, Blaise can only win if the next throw is tails and
he wins the subsequent game starting from tails: Bh = (1− p)Bt.

• Similarly, Rene wins starting from heads if the next throw is heads, or if it is tails and
he wins the subsequent game starting from tails: Rh = p+ (1− p)Rt.

• Finally, Rene can win starting from tails is the next throw is heads and then he wins
the subsequent game starting from heads: Rt = pRh.

Concentrate on Blaise’s probability of winning. Using the first two equations above, substi-
tute the second into the first to find Bt = (1− p) + p(1− p)Bt. This can be solved for Bt to
obtain Bt = 1−p

1−p+p2 . Since the probability that Blaise wins should be 1/2, set these equal:

1− p
1− p+ p2

=
1

2

2− 2p = 1− p+ p2

p2 + p− 1 = 0.

This can be solved using the quadratic formula, −1±
√
5

2
and the probability must be positive,

so p =
−1 +

√
5

2
.

13.
Diagonal AM divides the quadrilateral into two triangles, 4ARM and4ALM . Since
AR ⊥ RM , the triangle 4ARM is a 6-8-10 right triangle with right angle at R; its

area is 6·8
2

= 24. The maximum area of the quadrilateral occurs when the area of 4ALM
is maximized, which happens when it is isosceles. In this case, the base angles will be 30◦
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so the altitude will be 5 tan(30◦) = 5
√

3/3. Since the base is AM = 10, the area of 4ALM

will be 25
√

3/3. That makes the total area of the quadrilateral 24 + 25

√
3

3
.

14.
Note: the problem as stated originally had an error in it, requiring bi < i. This ren-
dered the problem impossible as stated. The solution that follows is for the corrected

version of the problem, where bi ≤ i.
The usual method of converting fractions to and from different base representations is to

repeatedly multiply by the base, and the next digit in the fraction’s expansion is the whole
part of the result. Apply the same method, except instead of multiplying by the base each
time, multiply by 2, then by 3, then by 4, and so on. The results are:

20

21
=
b1
2!

+
b2
3!

+
b3
4!

+ · · ·

2 · 20

21
= b1 +

2b2
3!

+
2b3
4!

+ · · ·

40

21
= 1

19

21
= b1 +

2b2
3!

+
2b3
4!

+ · · ·

So b1 must be the whole part of the left-hand side, which is 1. Then

19

21
=

2b2
3!

+
2b3
4!

+ · · ·

3 · 19

21
=

3!b2
3!

+
3!b3
4!

+ · · ·

57

21
= 2

5

7
= b2 +

3!b3
4!

+
3!b4
5!

+ · · ·

Now, b2 must be the whole part of the left-hand side, which is 2. Next we multiply both
sides by 4 to obtain 26

7
= b3 + 4!b4

5!
+ · · · to find b3 = 2. Continue in this fashion, multiplying

by 5, 6, 7, . . . . After multiplying by 7, the remaining fractional part is zero, so all further
multiplications would simply produce zeroes. We can stop the expansion at thie time. The
final result is that in base-factorial notation, 20

21
= 0.122415 .

15.
First, use the tangent half-angle formula tan(θ/2) = 1−cos(θ)

sin(θ)
to find that tan(π/12) =

1−cos(π/6)
sin(π/6)

= 1−
√
3/2

1/2
= 2−

√
3. Then cot(π/12) = 1

tan(π/12)
= 2 +

√
3.

Now here is a neat trick for finding cn = an +
1

an
. Note that cnc1 = an+1 + an−1 +

1

an−1
+

1

an+1
= cn+1 + cn−1. So we can set up a recurrence

cn =


a0 + 1

a0
= 1 + 1 = 2 n = 0

a+ 1
a

n = 1

c1cn−1 − cn−2 n ≥ 2

.
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In the current problem, c1 = (2 +
√

3) + (2−
√

3) = 4. So we start our recurrence:

c0 = 2

c1 = 4

c2 = 4c1 − c0 = 16− 2 = 14

c3 = 4c2 − c1 = 56− 4 = 52

...

c12 = 4c11 − c10 = 4 · 1,956,244− 524,174 = 7,300,802 .

Since this is already an integer, the floor can be ignored, making this the final answer.
For those who like efficiency, once c2 has been found, restart the recurrence from c0 and

c2 and the next step will be c4 instead of c3. Then starting the recurrence again with c0 and
c4 will get c8 and then c12, so the answer can be computed in four steps rather than 12.

16.
One method for solving this problem would be to find (or remember) the formula for
the volume of a regular tetrahedron, determine the volume of the “spikes” that are

added to each side, and add to find the total volume. There is a cleverer solution available,
however!

There is a very convenient regular tetrahedron with vertices at (0, 0, 0), (1, 1, 0), (1, 0, 1)
and (0, 1, 1). Using this as the base tetrahedron it is not too hard to convince oneself that
spiking this tetrahedron results in the unit cube! So to solve the problem all that needs be
done is to scale things up to the right size.

The sides of the convenient tetrahedron are easily seen to have length
√

2. Thus the sides
of the tetrahedron in the problem are 6

√
2 times as long. That means all relevant volumes

are (6
√

2)3 = 432
√

2 times as much. Since the volume of the unit cube is 1, the volume of

the final spiked tetrahedron (cube!) in the problem is 432
√

2 .

17.
Since the left-hand side is an increasing function of x there is only one possible solution.
To find it, choose a clever expression to represent x. For example, let x = 24y .

Then log4(log2(x)) = log4(4
y) = y while log2(log4(x)) = log2(4

y log4(2)) = log2(
1
2
4y) =

−1 + y log2(4) = 2y− 1. Thus, the equation becomes y+ 2y− 1 = 7
2

so y = 3
2
. Substituting,

x = 243/2 = 28 = 256 .

18.
For 1-Down, the only 3-digit cubes are 125, 216, 343, 512, and 729. But since neither
1 nor 4 is prime (violating 5-Across) and 9 is a multiple of 3 (violating 6-Across),

1-Down must be 125.
For 2-Down, the least multiples of 2022 are 2022, 4044, 6066, 8088, 10110, and 12132

which is the least to have no 0 digits. The rightmost three digits of this number are 132.
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For 3-Down, the three-digit Fibonacci numbers are 144, 233, 377, 610, and 987. But
5-Across rules out 144, 610, and 987, while 6-Across rules out 233 and 610. So this clue must
have answer 377.

Now 1-across reads 113? and must have all but one its digits the same. That requires
the unknown digit to be a 1.

5-Across has already used the primes 2, 3, and 7, so the final digit must be a 5.
Lastly, 4-Down’s last digit is the same as its first: 1.

With these numbers in place, the completed puzzle is
1 1 3 1
2 3 7 5
5 2 7 1

.

19.
This problem hinges on finding the minimum possible value of the exponent x−

√
x.

But since x is positive, let x = y2. Then the minimum value of y2− y must be found.
But finding the minimum value of the quadratic ay2 + by + c should be child’s play for a
mathlete; it occurs at the vertex y = −b/2a. Here, y = 1/2 and y2 − y = −1/4. So the

answer to the question is 4096−1/4 = (212)−1/4 = 2−3 = 1/8 .

20.
To find the number of trailing zeroes of n!, repeatedly divide n by 5, adding the
quotients and discarding the remainders. For instance, 58 ÷ 5 = 11 (ignoring the

remainder of 3), 11 ÷ 5 = 2, and 2 ÷ 5 = 0. Adding the quotients gives 11 + 2 = 13 so 58!
has 13 trailing zeroes. For this problem, the factorial has seven trailing zeroes. Some quick
work shows that n must lie between 30 and 34 inclusive.

There is an algorithm for finding the rightmost non-zero digit of n! but it is rather tedious
and it will be faster to just compute the digit directly for the small numbers in this problem.
Note that 30! has seven factors of 5, so to find its rightmost non-zero digit multiply together
all the units digits (ignoring trailing zeroes) and dividing by seven 2’s (done below by dividing
2, 4, 6, and 8 by all their 2’s) of the numbers up to 30: (the numbers that have been divided
by 2 or 5 are boldfaced)

1 · 1 · 3 · 1 · 1 · 3 · 7 · 1 · 9 · 1 · 1 · 2 · 3 · 4 · 3 · 6 · 7 · 8 · 9 · 4 · 1 · 2 · 3 · 4 · 1 · 6 · 7 · 8 · 9 · 3

whose units digit is 8. Multiplying by 31 also gives a rightmost non-zero digit of 8. By 32,
a 6. By 33, 8 again. Finally, multiplying this by 34 yields the desired 2.

21.
After 2k legs of his journey, Benny has traveled 1 + 1 + 2 + 2 + · · ·+ k+ k = k(k+ 1)
meters. The first time this is at least 2022 is for k = 45 when Benny would have

traveled 45 · 46 = 2070 meters. He will have to back up 48 meters from where he would
end up at this time! But where exactly is that? By placing point A at the origin and
having Benny first walk in the direction of the positive x-axis, and tracing out the first
few steps of Benny’s journey, his location after 2, 4, 6, 8, 10, . . . steps is (1, 1), (−1,−1),
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(2, 2), (−2,−2), (3, 3), . . . . Since k = 45 and Benny has traveled 2k legs of his walk, he
would be at (23, 23). But he must back up 48 meters from that point. His last trip of
45 meters came from (23,−22). Back up 3 more meters and he was at (20,−22). This is
√

202 + 222 =
√

884 = 2
√

221 meters from his starting point.

22.
Because the polygon is regular, IT = IF = HS and NT = HF . Then the requested
quantity IF · IT − IS · NT is equal to IF · HS − IS · HF . The reason for using

these lengths instead of the originals is because all of these are distances between vertices of
quadrilateral HISF , which is cyclic. Applying Ptolemy’s Theorem gives IF ·HS−IS ·HF =
HI · SF = 17 · 17 = 289 .

23.
Removing all the factors of 2 and 5 leaves 441 = 212 whose prime factors are 3 and
7. Adding: 2 + 3 + 5 + 7 = 17 .

24.
The given equality of ratios of lengths can be rewritten as

y
40
7
− y

=
p

p− 40
7

. Cross-

multiplying leads to yp− 40
7
y = 40

7
p− yp. It is given that yp = 40 so this simplifies to

40
7

(p+ y) = 2yp = 80, thus p+ y = 14.
Now (p + y)2 = 142 = 196. But (p + y)2 = p2 + 2yp + y2. Subtracting 4yp from this

quantity reveals that p2 − 2yp+ y2 = 196− 160 = 36. The left-hand side of this is (p− y)2.
So p − y = ±6. Since it is given that y > p, it must be that p − y = −6. Together with

p+ y = 14, the pair (y, p) is now easily determined to be (10, 4) .
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