2009 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 1-2

Time Limit 8 Minutes

Name
School

1. In one week, a salesman sells p cars for q thousands of dollars each, earning a commission of $\$ 100$ plus $q \%$ of the selling price each time he sells a car, where p and q are positive integers. If the salesman earns $\$ 4600$ for the week, compute the ordered pair (p, q).
2. If the slope of the line between $\left(-2, x^{2}+2 x\right)$ and $(x, 4 x+8)$ is $-3 / 4$, compute the value of x.

ANSWER TO PROBLEM 2

Problems 3-4

Time Limit: 9 Minutes

Name
School
3. Compute the value (in simplest form) of $(36+10 \sqrt{11})^{3 / 2}-(36-10 \sqrt{11})^{3 / 2}$.
4. If $x>1$, compute the minimum positive value of $\log _{2} x^{2}+\log _{x} 4$.

ANSWER TO PROBLEM 4

2009 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 5-6

Time Limit: 10 Minutes

Name \qquad
School \qquad
5. In parallelogram $A B C D, C D=12, A M=6$, and $\triangle Q M B$ and $\triangle D Q C$ each have area 60 . Compute the area of Δ QBC.

6. Compute the smallest positive value of x (in radians) such that $\frac{\sin x-\sin 7 x}{\cos 7 x-\cos x}=\tan 6 x$.

ANSWER TO PROBLEM 6

2009 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 7-8

Time Limit: 10 Minutes

Name
School
7. If $f\left(\frac{2 x-3}{x-2}\right)=5 x-2$, compute $f^{-1}(27)$.
8. Two circles are internally tangent at point A; diameter $\overline{A B}$ of the larger circle passes through the center of the smaller circle. Chord $\overline{B D}$ of the larger circle is tangent to the smaller circle at $C ; \overrightarrow{A C}$ intersects the larger circle at F. If the measure of arc $\overparen{F B}=82^{\circ}$, compute the measure of arc $\overparen{A D}$.

ANSWER TO PROBLEM 8

2009 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 9-10

Time Limit: 10 Minutes

Name
School
9. Two teams of three swimmers are in a pool with seven lanes. No two swimmers from the same team are allowed to be in adjacent lanes. Compute the number of possible arrangements if the swimmers themselves are distinguishable.
10. The first term of an infinite geometric series is 21 . The second term and the sum of the series are both positive integers. Compute all possible values of the second term.

ANSWER TO PROBLEM 10

2009 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 11-12
Time Limit: 12 Minutes
11. In convex quadrilateral $A R M L$, sides $\overline{A L}$ and $\overline{R M}$ are extended to point D, and sides $\overline{A R}$ and $\overline{M L}$ are extended to point E. Both points D and E lie outside the quadrilateral. Bisectors of angles E and D are drawn, intersecting at point P. If $\mathrm{m} \angle D P E=72^{\circ}$ and $\mathrm{m} \angle A R M=114^{\circ}$, compute $\mathrm{m} \angle A L M$.

Name
School

12. If $\sin (\sin x+\cos x)=\cos (\cos x-\sin x)$, compute the largest possible value of $\sin x$.

ANSWER TO PROBLEM 11

ANSWER TO PROBLEM 12

2009 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 13-14
Time Limit: 9 Minutes

Name
School
13. Some lines are drawn in the plane, no two parallel and no three concurrent. Another k lines are drawn in the same plane, parallel to each other but not to any of the original lines and again with no three lines concurrent. If the total number of lines altogether is 8 and the lines form a total of 40 triangles, compute k. Note that triangles whose areas overlap, but which have some areas not in common, are considered distinct.
14. Compute the number of positive integers b such that the equation $12 x+b y=42$ has solutions (x, y) where both x and y are positive integers.

ANSWER TO PROBLEM 13

ANSWER TO PROBLEM 14

2009 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 15-16
Time Limit: 11 Minutes

Name
School
15. If n is a positive integer such that n^{2} has 2009 distinct positive integer divisors, compute the smallest number of distinct positive integer divisors that n could have.
16. Five distinct numbers from the set $\{1,2,3, \ldots, 17\}$ are chosen at random. Compute the probability that their sum is divisible by 3 ?

Problems 17-18
Time Limit: 12 Minutes

Name
School
17. If $4 x^{3}-3 x^{2}-12 x+23=a(x+2)^{3}+b(x+2)^{2}+c(x+2)+d$, compute $a+b+c+d$.
18. Complete the cross-number puzzle, where each Across answer is a 4-digit number and each Down answer is a 3 -digit number. No answer begins with the digit 0 . NOTE: Your answer must be written in the spaces at the bottom of this page, not the grid to the right of the clues.

Across

1. All but one of its digits are the same.
2. All of its digits are different.
3. Its digits are strictly decreasing

Down

1. A power of 2 .
2. A factor of 2009 .
3. Twice a perfect square.
4. A perfect square.

1	2	3	4
5			
6			

ANSWER TO PROBLEM 17

ANSWER TO PROBLEM 18

1	2	3	4
5			
6			

2009 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 19-20
Time Limit: 11 Minutes

Name
School
19. Point A is on the bisector of $\angle B O C$, whose measure is $60^{\circ} ; O A=12$ units. Compute the minimum perimeter of $\triangle A B C$.
20. A complex number $z=a+b i, b>0$, has the property that the distance from z to z^{2} (on the complex plane) is half the distance from 1 to z (on the complex plane), which in turn equals the distance from 1 to z^{2}. Compute b.

ANSWER TO PROBLEM 20

Problems 21-22

Time Limit: 10 Minutes

Name
School
21. If a and k are constants, and if the system below has infinitely many solutions (x, y, z), compute the value of k.

$$
\left\{\begin{array}{l}
4 x+3 y=15 \\
2 x+5 z=k \\
3 y-a z=4
\end{array}\right.
$$

22. Compute the number of ordered pairs of integers (a, b) satisfying the equation

$$
4 a^{2}+b=b^{2}+30 .
$$

ANSWER TO PROBLEM 21

ANSWER TO PROBLEM 22

2009 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 23-24
Time Limit: 8 Minutes

Name
School
23. If the points $(4, b),(b, 2 b-8)$ and $(-4,8)$ are collinear, compute all possible values of b.
24. Eleven points $A_{1}, A_{2}, \ldots, A_{11}$ are arranged on a circle in that order, and connected by chords as follows: A_{1} is connected to A_{3}, A_{3} to A_{5}, \ldots, A_{9} to A_{11}, A_{11} to A_{2}, A_{2} to $A_{4}, \ldots A_{10}$ to A_{1}. Compute the minimum possible value, in degrees, of $\mathrm{m} \angle A_{1}+\mathrm{m} \angle A_{2}+\ldots+\mathrm{m} \angle A_{11}$.

ANSWER TO PROBLEM 23

ANSWER TO PROBLEM 24

2009 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Part I Answers

1. $(10,6)$
2. 16°
3. $\frac{19}{4}$
4. 648
5. $172 \sqrt{11}$
6. 4
7. 150
8. $\frac{\pi}{20}$
9. $\frac{43}{19}$
10. $12,14,18$, or 20 (must have all four)
11. 102°
12. $\frac{\pi}{4}$
13. 3
14. 10

2009 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Part II Answers

15. 336
16. $\frac{\sqrt{15}}{8}$
17. $\frac{1033}{3094}$
18. $\frac{11}{2}$
19. 28
20. 8
21.

1	2	1	1
2	8	6	0
8	7	2	0

23. 12 or 8 (must have both)
24. $12 \sqrt{3}$
25. 1260°

Tryout Results 2008-09

198 students tried out. Top score was 18 ; cutoff for A/B was 11 .

Item Analysis

Q	\# right			
1	44			
2	116			
3	22			
4	138			
5	64			
6	9			
7	78			
8	60			
9	12			
10	30			
11	38			
12	27	\quad	Q	\# right
:---:	:---:			
13	80			
14	101			
15	40			
16	4			
17	95			
18	64			
19	25			
20	2			
21	92			
22	8			
23	153			
24	37			

Problems 4 and 12 were much easier than anticipated, because their answers were guessable.
Problems 16 and 20 were much more difficult than anticipated, because Problem 16 had so many cases, and problem 20 had a "red herring" solution if students tried to write equations starting with the form $a+b i$.

