1996 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 1-2

Time Limit 9 Minutes

Name

School \qquad

1. The number $x>0$. The set of numbers 3,36 , and x has an arithmetic mean which is $\mathbf{1 3}$ greater than the geometric mean. Find the value of x.
2. In the figure shown, $\overline{A D} \cong \overline{B C}$
$\overline{M N} \perp \overline{D C}$
$\overline{M N} \perp \overline{A B}$
$\overline{P C} \perp \overline{P B}$
M is the midpoint of $\overline{\mathrm{DC}}$
N is the midpoint of $\overline{\mathrm{AB}}$

$C D=8, A B=10, M N=12$
Find length $P N$

1996 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 3-4

Time Limit 10 Minutes

Name

School \qquad
3. Find the shortest altitude of a triangle whose sides have lengths $\mathbf{1 7}, \mathbf{2 5}$, and 28 .
4. If $x=\sqrt[3]{20+14 \sqrt{2}}+\sqrt[3]{20-14 \sqrt{2}}$, find the value of $x^{3}-6 x$ in simplest from.

Problems 5-6

Time Limit 11 Minutes

Name

School \qquad
5. In triangle $A C E$, B is on $A C$ and D is on $C E$, and $B E$ meets $A D$ at F. EB bisects angle AEC. If $\mathrm{AB}=3, \mathrm{BC}=4, \mathrm{AE}=6$, and F is the midpoint of BE , find $C D$.
6. Find all real numbers x, with 0 蕂 $x<2 \pi$, such that $\sin x, \sin 2 x, \sin 3 x$ form an arithmetic sequence.

Problems 7-8

Time Limit 11 Minutes

Name

School \qquad
7. A six-digit number consists of the same three digits repeated twice [such as 732732]. Find the least possible number of positive divisors such a six-digit number can have.
8. Acute triangle $A B C$ is inscribed in a circle. Altitudes $A M$ and $C N$ are extended to meet the circle at P and Q, respectively. If $P Q: A C=7: 2$, find $\sin \angle A B C$.

ANSWER TO PROBLEM 7

ANSWER TO PROBLEM 8

Problems 9-10
Time Limit 12 Minutes

Name
School
9. The roots of $x^{3}+2 k x^{2}-k x+10=0$ form an arithmetic progression. All the roots are integers. Find the value of k.
10. If $\sin ^{6} x+\cos ^{6} x=\frac{2}{3}$, find all possible values of $\sin (2 x)$

\qquad

School \qquad
11. Trapezoid $A B C D$ is inscribed in a circle with diameter $A B$. Triangle $A B C$ has area 150 and triangle ACD has area 120. Find length BC.
12. A fair coin is tossed 17 times consecutively. Find the probability that there will be at least 11 consecutive heads.

ANSWER TO PROBLEM 11

ANSWER TO PROBLEM 12
\square

1996 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 13-14
Name \qquad
13. Find the ordered quadruple of positive integers (a, b, c, d)

$$
\text { such that } \frac{423}{98}=a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}
$$

14 Find all positive intgers n 米 20 such that the set $\{1,2,3, \ldots, n\}$ can be partitioned into two disjoint subsets so that the sum of the elements in one subset is twice the sum of the elements in the other subset.

ANSWER TO PROBLEM 13

ANSWER TO PROBLEM 14

15. In the sequence $6, x, y, 16$, the first three are in arithmetic progression and the last three are in geometric progression. Find all such ordered pairs (\mathbf{x}, \mathbf{y}).
16. Triangle $A B C$ is located in the interior of triangle DEF. The sides of triangle $A B C$ are parallel to and 2 units away from the sides of triangle DEF. If triangle DEF has sides 13,14 , and 15 , find the area between the two triangles.

ANSWER TO PROBLEM 15
ANSWER TO PROBLEM 16
\square
\qquad
17. Solve for $\mathrm{x}:\left(2+\log _{2} x\right)^{3}+\left(-1+\log _{2} x\right)^{3}=\left(1+\log _{2} x^{2}\right)^{3}$
18. Complete the cross-number puzzle at right in which each across answer is a four-digit positive integer and each down answer is a three-digit positive integer.
[Note: the grid at right is for scratch work only. The answer must appear in the answer space at the bottom of the page.]

Across
 Down

1. Last two digits are equal
2. A Fibonacci number with a digit that appears twice
3. Digits all distinct multiples of the same prime digit
4. A perfect cube
5. A Fibonacci number
6. Digits strictly increasing in a perfect square
7. A perfect cube

ANSWER TO PROBLEM 17

ANSWER TO PROBLEM 18

1	2	3	4
5			
6			

1996 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 19-20

Time Limit 12 Minutes

Name \qquad

School \qquad
19. Find the value of $\tan 20^{\circ}+\tan 40^{\circ}+\sqrt{3} \tan 20^{\circ} \tan 40^{\circ}$
20. In parallelogram $A B C D$, angle A is acute and $A B=5$. Point E is on side $A D$ with $A E=4$ and $B E=3$. A line through B, perpendicular to line $C D$, intersects line $C D$ at point F. If $B F=5$, find length $E F$.

ANSWER TO PROBLEM 19

ANSWER TO PROBLEM 20

1996 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 21-22
Time Limit 10 Minutes

Name
School
21. In triangle $\mathrm{ABC}, \mathrm{AC}=3, \mathrm{BC}=4$, and $\mathrm{AB}=5$. A circle with center on side AC is tangent to sides $A B$ and $B C$. Find the area of the circle.
22. The coordinates of the vertices of a triangle, in polar coordinates, are $\left(12,30^{\circ}\right),\left(4,90^{\circ}\right)$, and $\left(8,150^{\circ}\right)$. Find the area of the triangle.

ANSWER TO PROBLEM 21

ANSWER TO PROBLEM 22

1996 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS

Problems 23-24

Time Limit 10 Minutes

Name

School
23. Simplify completely: $\left(\log _{4} 27\right)\left(\log _{9} 625\right)\left(\log _{5} 16\right)$
24. In rectangle $\mathrm{ABCD}, \mathrm{AB}=6$ and $\mathrm{BC}=8$. Equilateral triangles ADE and DCF are drawn on the exterior of $A B C D$. Find the area of triangle BEF.

ANSWER TO PROBLEM 23

ANSWER TO PROBLEM 24

1996 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS ANSWERS 1-14

1. 54
2. $\frac{1}{4}$
3. 2,10(any order)
4. -3
5. 15
6. $\frac{2}{3}, \frac{-2}{3}$
7. 40
8. 10
9. $\frac{28}{5}$
10. $\frac{1}{512}$
11. $0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}$
12. $(4,3,6,5)$
13. 16
14. $2,3,5,6,8,9,11,12,14,15,17,18,20$

1996 CHICAGO AREA ALL-STAR MATH TEAM TRYOUTS ANSWERS 15-24

15. $(9,12),(1,-4)$
16. $\sqrt{10}$
17. 63
18. $\frac{16 \pi}{9}$
19. $\frac{1}{4}, 2, \frac{\sqrt{2}}{2}$
20. $4 \sqrt{3}$
$\begin{array}{llll}3 & 6 & 2 & 2\end{array}$
$\begin{array}{llll}4 & 1 & 8 & 1\end{array}$
21. $\begin{array}{llll}3 & 0 & 9 & 6\end{array}$
22. 12
23. $\sqrt{3}$
24. $36+25 \sqrt{3}$
